Academic Course Description

BHARATH UNIVERSITY

Faculty of Engineering and Technology
Department of Electronics and Communication Engineering

BEC003SATELLITE COMMUNICATION

Seventh Semester, 2016-17 (Odd Semester)

Course (catalog) description

The course helps the students to become familiar with satellites and satellite services. This course gives thorough understanding about the satellite orbits and launching. It imparts knowledge on earth segment and space segment components. It explains the satellite access by various users.

Compulsory/Elective course : Elective for ECE students

Credit hours : 3 Hours

Course Coordinator : Ms.G.MeenaKumari, Assistant Professor, Department of ECE

Instructor(s)

Name of the Instructor		Office location	Office Phone	Email(Domain:@bharathuniv.ac.in) Class handling	Consultation
1.MS.G.MEENA KUMARI	Final Year	SA006		meenakumari.ece@bharathuniv.ac.in	12.45-1.15 PM

Relationship to other courses

Pre-requisites : Communication Engineering II

Assumed knowledge : The students will have a physics and mathematics background obtained at a high school (or

equivalent)level. In particular, working knowledge of basic mathematics including

differentiation, integration and probability theories are assumed.

Following courses : Nil

UNIT I INTRODUCTION

9

Introduction, Types — Active and Passive Satellite, Frequency allocation, Satellite orbits, Kepler's laws, Definitions of terms for earth-orbiting Satellites, Apogee and Perigee heights, Orbit Perturbations, Geo stationary orbit, Antenna look angles, Limits of visibility, Earth Eclipse of Satellite, Sun transit outage, launching orbits.

9

Introduction, The Power supply, Attitude control, Spinning satellite stabilization, Momentum Wheel Stabilization, Station keeping, Thermal control, TT&C subsystem, Transponders, The Wide Band receiver, The Input De-multiplexer, The Power Amplifier, The Antenna subsystem.

UNIT III THE EARTH SEGMENT AND ANTENNAS

9

Transmit receive earth station subsystems, up-converters-High Power Amplifier-Receive chain-LNA&LNB.TVRO earth station, The isotropic radiator and antenna gain, Horn antenna, The Parabolic reflector, Double reflector antenna-Cassie grain antenna-Gregorian antenna.

UNIT IV THE SPACE LINK & SATELLITE ACCESS

9

EIRP, Transmission losses The Link budget equation, System noise, Effects of rain, up link and down link C/N ratio. Multiple access techniques-Concepts and types of TDMA, FDMA and CDMA-Comparison and contrast of TDMA, FDMA and CDMA.

UNIT V SATELLITE APPPLICATIONS

9

Satellite Mobile services, DBS, VSAT, Remote sensing, GPS, INTELSAT, INMARSAT, SARSAT, Video Conferencing and Internet connectivity

Total: 45 Periods

TextBook:

- T1. Dennis Roddy, "Satellite Communication", 4th Edition, McGraw Hill International, 2006.
- T2. Wilbur L.Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, "Satellite Communication Systems Engineering", Prentice Hall/Pearson, 2007.

References:

- R1.N.Agarwal, "Designof GeosynchronousSpace Craft", Prentice Hall, 1986.
- R2. BruceR. Elbert, "The Satellite Communication Applications", Hand Book, Artech House Bostan London, 1997.
- R3. TriT. Ha, "Digital Satellite Communication", 2ndedition,1990.
- R4. Emanuel Fthenakis, "Manual of Satellite Communications", McGrawHill BookCo., 1984.

Computer usage: Nil

Professional component

General - 10%
Basic Sciences - 20%
Engineering sciences & Technical arts - 20%
Professional subject - 50%

Broad area: Engineering Physics, Communication Engineering.

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University Examination	TBA	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To develop problem solving skills and understanding of circuit theory through the application of techniques and principles of electrical circuit analysis to common circuit	Correlates to program outcome	
problems. This course emphasizes:	Н	М
Define orbital mechanics and launch methodologies	a,h	c,e,f,g,i
Describe satellite subsystems	c,g,j	a
3. Design link power budget for satellites	b,k,l	a,c,g,h,i
4. Compare competitive satellite services	b,c	a,e,i,k,l
5. Explain satellite access techniques	-	e,f,g,k,l
6. DTH and compression standards	F	d,e,g

H: high correlation, M: medium correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter
UNIT I	INTRODUCTION	•	·
1.	Introduction, Types Active and Passive Satellite	No	
2.	Frequency allocation, Satellite orbits, Kepler's laws	No	
3.	Definitions of terms for earth-orbiting Satellites	No	
4.	Apogee and Perigee heights	No	[T1] Chapter -1,2,3
5.	Orbit Perturbations, Geo stationary orbit	No	
6.	Antenna look angles	No	
7.	Limits of visibility	No	
8.	Earth Eclipse of Satellite	No	
9.	Sun transit outage, launching orbits	No	
JNIT II	THE SPACE SEGMENT		
10.	Introduction, The Power supply	No	
11.	Attitude control	No	
12.	Spinning satellite stabilization	No	[T1] Chapter 7
13.	Momentum Wheel Stabilization	No	[T1] Chapter -7
14.	Station keeping, Thermal control	No	

15.	TT0 C cubcustom Transponders	No	1
	TT&C subsustem, Transponders		
16.	The Wide Band receiver	No	
17.	The Input Demultiplexer	No	
18.	The Power Amplifier, The Antenna subsystem.	No	
UNIT III T	THE EARTH SEGMENT AND ANTENNAS		
19.	Introduction, Transmit receive earth station subsystems	No	
20.	up-converters-High Power Amplifier	No	-
21.	Receive	No	[T1] Chapter -6
	chain-LNA&LNB		
22.	TVRO earth station	No	
23.	The isotropic radiator and antenna gain	No	
24.	Horn antenna	No	
25.	TheParabolic reflector	No	
26.	Cassie grain antenna	No	
27.	Gregorian antenna, Double reflector antenna	No	
UNIT IV THE	E SPACE LINK & SATELLITE ACCESS		
28.	Introduction, EIRP, Transmission losses	No	
29.	System noise, Effects of rain	No	
30.	up link and down link C/N ratio	No	
31.	Multiple access techniques	No	
32.	The Link budget equation	No	[T1] Chapter -4,12,14
33.	Concepts and types of TDMA, FDMA and	No	
	CDMA		
34.	TDMA	No	
35.	FDMA	No	
36.	CDMA	No	
UNIT V S	SATELLITE APPPLICATIONS		
37.	Introduction, Satellite Mobile services	No	
38.	DBS	No	
39.	VSAT	No	
40.	Remote sensing, GPS	No	[T1] Chapter 17
41.	INTELSAT	No	[T1] Chapter -17
42.	INMARSAT	No	
43.	SARSAT	No	
44.	Video Conferencing	No	
45.	Internet connectivity	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	10%
Cycle Test – II	-	10%
Model Test	-	25%
Attendance	-	5%
Final exam	-	50%

Prepared by: G.MeenaKumari, Assistant Professor, Department of ECE Dated:

Addendum

ABET Outcomes expected of graduates of B. Tech / ECE / program by the time that they graduate:

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

- **PEO1:** Graduates will perform as a successful professional engineer in related fields of Electronics and Communication Engineering.
- **PEO2:** Graduates will pursue higher education and/or engage themselves in continuous professional development to meet global standards.
- **PEO3:** Graduates will work as a team in diverse fields and gradually move into leadership positions.
- **PEO4:** Graduates will understand current professional issues, apply latest technologies and come out with innovative solutions for the betterment of the nation and society

Course Teacher	Signature
Ms. G.Meenakumari	

Course Coordinator	Academic C	oordinator	Professo	or In-Charge	HOD/ECE
(Ms.G.MeenaKumari)	()	()	(Dr.M.Sundararajan)